资源类型

期刊论文 435

年份

2023 66

2022 36

2021 42

2020 33

2019 33

2018 30

2017 25

2016 21

2015 22

2014 18

2013 13

2012 11

2011 11

2010 17

2009 16

2008 11

2007 9

2006 1

2005 1

2004 2

展开 ︾

关键词

吸附 4

可持续发展 3

抽水蓄能 3

CO2利用 2

CO2封存 2

大坝 2

宏转录组 2

快速充电 2

电动汽车 2

电化学储能 2

重金属废水 2

6G;广域覆盖信令小区;多维资源分配;深度Q网络(DQN) 1

ArcObjects 1

CCS 1

CCUS 1

CO2地下埋存 1

CO2 EOR 1

CO2 捕集 1

CO2净排放量 1

展开 ︾

检索范围:

排序: 展示方式:

High purity Mn

Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 383-400 doi: 10.1007/s11708-017-0485-3

摘要: Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn O nanoparticles through solid state thermal treatment of Mn O spinel nanoparticles, resulting in a chemical formula of [Mn ][Mn O ], evidenced by Rietveld refinement of synchrotron-based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn O electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn O electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

关键词: manganese oxides Mn5O8     high voltage     aqueous Na-ion storage    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 217-225 doi: 10.1007/s11705-022-2214-7

摘要: Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.

关键词: α-MnO2 hollow nanorods     g-C3N4     heterojunction     aqueous Zn-ion batteries    

钠超离子导体型固体电解质的改性及其在钠离子电池中的应用 Article

张强强, 周权, 陆雅翔, 邵元骏, 戚钰若, 戚兴国, 钟贵明, 杨勇, 陈立泉, 胡勇胜

《工程(英文)》 2022年 第8卷 第1期   页码 170-180 doi: 10.1016/j.eng.2021.04.028

摘要: 本文采用简单的两步固相法合成了名义成分为Na3+2xZr2‒xMgxSi2PO12 的钠(Na)超离子导体(NASICON)型固体电解质,其中在25 ℃时Na3.3Zr1.85Mg0.15此外,由于文献中缺乏关于NASICON是否能够提供足够的阳极电化学稳定性来实现高压固态钠电池的研究,我们首先使用了高压Na3(VOPO4)2

关键词: 固态电解质     固态钠电池     NASICON     界面     隔膜     涂层    

Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants

Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1268-3

摘要: Abstract • The coupling of oxidants with ZVI overcome the impedance of ZVI passive layer. • ZVI/oxidants system achieved fast and long-effective removal of contaminants. • Multiple mechanisms are involved in contaminants removal by ZVI/oxidant system. • ZVI/Oxidants did not change the reducing property of ORP in the fixed-bed system. Zero-valent iron (ZVI) technology has recently gained significant interest in the efficient sequestration of a wide variety of contaminants. However, surface passivation of ZVI because of its intrinsic passive layer would lead to the inferior reactivity of ZVI and its lower efficacy in contaminant removal. Therefore, to activate the ZVI surface cheaply, continuously, and efficiently is an important challenge that ZVI technology must overcome before its wide-scale application. To date, several physical and chemical approaches have been extensively applied to increase the reactivity of the ZVI surface toward the elimination of broad-spectrum pollutants. Nevertheless, these techniques have several limitations such as low efficacy, narrow working pH, eco-toxicity, and high installation cost. The objective of this mini-review paper is to identify the critical role of oxygen in determining the reactivity of ZVI toward contaminant removal. Subsequently, the effect of three typical oxidants (H2O2, KMnO4, and NaClO) on broad-spectrum contaminants removal by ZVI has been documented and discussed. The reaction mechanism and sequestration efficacies of the ZVI/oxidant system were evaluated and reviewed. The technical basis of the ZVI/oxidant approach is based on the half-reaction of the cathodic reduction of the oxidants. The oxidants commonly used in the water treatment industry, i.e., NaClO, O3, and H2O2, can be served as an ideal coupling electron receptor. With the combination of these oxidants, the surface corrosion of ZVI can be continuously driven. The ZVI/oxidants technology has been compared with other conventional technologies and conclusions have been drawn.

关键词: Zero-Valent Iron (ZVI)     Oxidants     Heavy Metals (HMs)     Metalloids     Nitrate     Phosphate    

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 19-27 doi: 10.1007/s11705-019-1888-y

摘要: We report here a water-soluble metal cation sensor system based on the as-prepared or reduced form of an expanded porphyrin, texaphyrin. Upon metal complexation, a change in the redox state of the ligand occurs that is accompanied by a color change from red to green. Although long employed for synthesis in organic media, we have now found that this complexation-driven redox behavior may be used to achieve the naked eye detectable colorimetric sensing of several number of less-common metal ions in aqueous media. Exposure to In(III), Hg(II), Cd(II), Mn(II), Bi(III), Co(II), and Pb(II) cations leads to a colorimetric response within 10 min. This process is selective for Hg(II) under conditions of competitive analysis. Furthermore, among the subset of response-producing cations, In(III) proved unique in giving rise to a ratiometric change in the ligand-based fluorescence features, including an overall increase in intensity. The cation selectivity observed in aqueous media stands in contrast to what is seen in organic solvents, where a wide range of texaphyrin metal complexes may be prepared. The formation of metal cation complexes under the present aqueous conditions was confirmed by reversed phase high-performance liquid chromatography, ultra-violet-visible absorption and fluorescence spectroscopies, and high-resolution mass spectrometry.

关键词: texaphyrin     fluorescent sensor     ion-sensing     indium     mercury    

Analysis of two new degradation products of arsenic triglutathione in aqueous solution

Feng ZHAO, Yuchen CHEN, Bin QIAO, Jing WANG, Ping NA

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 292-300 doi: 10.1007/s11705-012-1208-2

摘要: Inorganic arsenicals, including arsenite (As ) and arsenate (As ), are well-known human carcinogens. Recently, studies have indicated that arsenic triglutathione (As(GS) ) is unstable in an aqueous solution. The present study was designed to evaluate the degradation mechanism of As(GS) in an aqueous solution using high-performance liquid chromatography-electrospray ionisation mass spectrometry (HPLC-ESI-MS). Based on the fragments obtained from MS and MS , we identified two new compounds: one was an isomer of glutathione (GSH), and the other was a product from the cleavage of the glutamyl of oxidised glutathione (GSSG). The isomerization of GSH resulted in the loss of its function such as detoxification of many reactive metabolites. The formation of the two new compounds affected the ratio of GSH/GSSG, and thus may affect the antioxidant and detoxification of GSH/GSSG in mammalian cells.

关键词: arsenic triglutathione     glutathione     HPLC-ESI-MS    

K+ and Na+ fluxes in roots of two Chinese Iris populations

Pinfang LI,Biao ZHANG

《农业科学与工程前沿(英文)》 2014年 第1卷 第2期   页码 144-149 doi: 10.15302/J-FASE-2014016

摘要: Maintenance of ion homeostasis, particularly the regulation of K and Na uptake, is important for all plants to adapt to salinity. Observations on ionic response to salinity and net fluxes of K , Na in the root exhibited by plants during salt stress have highlighted the need for further investigation. The objectives of this study were to compare salt adaptation of two Chinese Iris ( Pall. var. (Fisch.) Koidz.) populations, and to improve understanding of adaptation to salinity exhibited by plants. Plants used in this study were grown from seeds collected in the Xinjiang Uygur Autonomous Region (Xj) and Beijing Municipality (Bj), China. Hydroponically-grown seedlings of the two populations were supplied with nutrient solutions containing 0.1 (control) and 140 mmol·L NaCl. After 12 days, plants were harvested for determination of relative growth rate and K , Na concentrations. Net fluxes of K , Na from the apex and along the root axis to 10.8 mm were measured using non-invasive micro-test technique. With 140 mmol·L NaCl treatment, shoots for population Xj had larger relative growth rate and higher K concentration than shoots for population Bj. However, the Na concentrations in both shoots and roots were lower for Xj than those for Bj. There was a lower net efflux of K found in population Xj than by Bj in the mature zone (approximately 2.4-10.8 mm from root tip). However, no difference in the efflux of Na between the populations was obtained. Population Xj of continued to grow normally under NaCl stress, and maintained a higher K /Na ratio in the shoots. These traits, which were associated with lower K leakage, help population Xj adapt to saline environments.

关键词: Iris lactea Pall. var. chinensis (Fisch.) Koidz     population     K+ and Na+     ion flux     non-invasive micro-test technique    

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium ion

《能源前沿(英文)》 2019年 第13卷 第3期   页码 597-602 doi: doi:10.1007/s11708-018-0576-9

摘要: VS4 has gained more and more attention for its high theoretical capacity (449 mAh/g with 3e transfer) in lithium ion batteries (LIBs). Herein, a layered structure VS4 anchored in graphene aerogels is prepared and first reported as cathode material for LIBs. VS4@GAs composite exhibits an exceptional high initial reversible capacity (511 mAh/g), an excellent high-rate capability (191 mAh/g at the 5 C), and an excellent cyclic stability (239 mAh/g after 15 cycles).

关键词: VS4     graphene aerogels     cathode     lithium storage    

钠离子电池——碳中和世界的储能技术

吴凯, Xinwei Dou, 张欣欣, 欧阳楚英

《工程(英文)》 2023年 第21卷 第2期   页码 36-38 doi: 10.1016/j.eng.2022.04.011

CoS@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1500-1513 doi: 10.1007/s11705-021-2086-2

摘要: As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

关键词: in-situ carbon-doped     surface unsaturated sulfur enriched     pseudocapacitive energy storage     biomass-derived carbon     lithium-ion capacitors    

Preparation and lithium storage performances of g-C

Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 759-766 doi: 10.1007/s11708-020-0810-0

摘要: As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C N /Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C N /Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C N /Si electrode is evaluated, the initial discharge capacity of g-C N /Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C N /Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.

关键词: magnesium thermal reduction     g-C3N4/Si nanocomposites     volume expansion     electroconductivity     lithium-ion battery    

Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles

Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1282-5

摘要: Abstract • The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.

关键词: Nano-TiO2     Rice     Photosynthesis     Metabolomics     Energy storage    

钠离子电池工程化——机遇与挑战 Review

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

《工程(英文)》 2023年 第24卷 第5期   页码 172-183 doi: 10.1016/j.eng.2021.08.032

摘要:

当前,在应对全球能源枯竭与环境恶化之际,可持续且环境友好的可再生能源正迎来重要的发展机遇。以二次电池为代表的电能存储(EES)技术,可实现绿色新能源安全且经济有效的存储和转化,被视为可平抑可再生能源间歇性并实现稳定并网输入的最佳解决方案。钠离子电池(SIB),受益于钠资源的丰富
性及低成本,是下一代大规模电化学存储系统最具应用前景的选择之一。本文详细讨论了锂离子电池(LIB)和钠离子电池在不同应用场景下的主要区别,并描述了当前对钠离子电池的理解。通过比较锂离子电池、铅酸电池(LAB)和钠离子电池之间的技术发展情况,进一步揭示钠离子电池的优势。本文以基于钠离子电池技术所取得的商业化成就为文章亮点,重点介绍了五家钠离子电池企业和相应的钠离子电池产品,以及各自的钠离子电池化学与技术。最后,讨论了下一代钠离子电池商业化的前景与挑战。

关键词: 电化学储能     钠离子电池     商业化     下一代    

标题 作者 时间 类型 操作

High purity Mn

Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

期刊论文

钠超离子导体型固体电解质的改性及其在钠离子电池中的应用

张强强, 周权, 陆雅翔, 邵元骏, 戚钰若, 戚兴国, 钟贵明, 杨勇, 陈立泉, 胡勇胜

期刊论文

Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants

Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz

期刊论文

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

期刊论文

Analysis of two new degradation products of arsenic triglutathione in aqueous solution

Feng ZHAO, Yuchen CHEN, Bin QIAO, Jing WANG, Ping NA

期刊论文

K+ and Na+ fluxes in roots of two Chinese Iris populations

Pinfang LI,Biao ZHANG

期刊论文

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium ion

期刊论文

钠离子电池——碳中和世界的储能技术

吴凯, Xinwei Dou, 张欣欣, 欧阳楚英

期刊论文

CoS@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion

期刊论文

Preparation and lithium storage performances of g-C

Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG

期刊论文

Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles

Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu

期刊论文

钠离子电池工程化——机遇与挑战

赵丽娜, 张腾, 李巍, 李涛, 张隆, 张晓光, 汪志义

期刊论文